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Abstract

Evaluating the performance of an investment portfolio is a central theme in modern fund

management. First, one estimates the distribution of the portfolio risk-adjusted reward. Sec-

ond, the computation of a performance measure is needed to rank a given managed fund.

This step is very sensitive to outliers in the dataset used for estimation and the resulting

ranking can be reversed. To limit this distortion one has to check alternative performance

measures in term of their sensitivity to outliers. This correspond to different theoretical

foundations of the performance measures. A statistical procedure must be integrated into

these foundations, driving managers and practitioners to performance attribution which is

consistent with performance persistence. In this short note we show how some of the most

adopted measures, namely the Sharpe ratio, the Gain-Loss ratio, the Average-Value-at-Risk

ratio and its simpler version the Value-at-Risk ratio, lack qualitative robustness in the sense

of the Hampel’s definition.
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1 Introduction

The literature on financial performance analysis provides different tools to its quantification.

In this note we restrict ourselves to those indexes represented by the ratio of a reward mea-

sure to a risk measure, as opposed to the ratio typical reward-to-variability ratios such as the
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Sharpe ratio. To implement the performance measurement one needs to estimate both the statis-

tics used in numerator and the denominator through observed data. Unfortunately performance

attribution based on fund ranking is affected by outliers and a bad fit to the bulk of the data can

change it drastically causing undue acknowledgement of managerial skill with consequences

on a macro/micro-economic level. The control of estimation errors is a fundamental issue.

Reward-to-variability risk measures such as the Sharpe ratio can be (under)overestimated mak-

ing it difficult to judge the true ability of a fund manager because of high variability of the

delivered ranking, see for example [21]. This leads to the notion of robustness related to sepa-

rately the reward and the risk measure, besides to that of their ratio.

To illustrate intuitively the problem of data contamination when performance evaluation is in-

volved, we give a simple numerical example in Section 2. We examine the bad behavior of four

performance measures: the Sharpe ratio, the Gain-Loss ratio, the Average Value-at-Risk ratio

and the analogous Value-at-Risk ratio. We only consider nonparametric estimation errors. Sec-

tion 3.1 contains preliminary definitions, while Section 3.2 links the financial definition and the

statistical definition of the above ratios. Section 4 introduces the classical notion of robustness

focusing on our application to performance measures. After further terminology explained in

Section 4.1, in Section 4.2 we state a result against the robustness of all the proposed ratios.

2 Numerical Example

Are high values of a performance criterion good indicator of fund manager’s ability? To gain

intuition and to fully motivate our analysis in the rest of the paper we introduce an elementary

example. LetX be the random rate of return on an investment fund over a daily horizon, with

probability distribution

P(X = −0.05) = 0.15, P(X = 0.01) = 0.45, P(X = 0.02) = 0.40.

We interpret the above as a model of the managerial skill in that it quantifies the willingness

to capture opportunities from private of public information not reflected by asset prices. To

forecast and attribute financial performance taking into account the intrinsic risk ofX one can

compute the ratio of expected return to the standard deviation

E(X)

st. dev.(X)
= 0.2122,

a risk-adjusted reward index. Now suppose an unexpected market movement is embedded into

the above model, in such a way that the ‘contaminated’ random return becomesX̃ with distri-
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bution

P(X̃ = −0.50) = 0.0080, P(X̃ = −0.05) = 0.1488, P(X̃ = 0.01) = 0.4464,

P(X̃ = 0.02) = 0.3968.

In this modified model there is a small probability of−50% daily return with forecasted perfor-

mance
E(X̃)

st. dev.(X̃)
= 0.0189.

To interpret these results, we can think of how outliers might hide the managerial skill concern-

ing a high positive performance of at least 1% daily return with 84.32 % of probability. To what

extent is past performance a good indicator of future performance? Using historical data may be

misleading in the presence of data contamination, especially if other funds must be evaluated.

Suppose an alternative investment is under consideration and that its random rate of returnY

has distribution

P(Y = −0.024) = 0.45, P(Y = 0.003) = 0.15, P(Y = 0.02) = 0.40

and performance
E(Y )

st. dev.(Y )
= 0.1603.

To compare these two funds we can rank their performance through the corresponding risk-

adjusted reward index. If there is not data contamination then the performance of the first fund

is higher. But it is clear how outliers determine nonresistant ranking, and a small probability

mass placed at̃X = −0.50 may induce investors to prefer the second fund based on the chosen

performance criterion. What happen if we use other criteria? Taking for example the negative

of quantile−qα(·) at the levelα = 0.01 as a risk measure we compute:

E(X)

−qα(X)
= 0.1025,

E(X̃)

−qα(X̃)
= 0.0020,

E(Y )

−qα(Y )
= 0.2014.

It seems that a different approach to quantify riskiness removes the performance criterion’s

sensitivity to data contamination and preserves fund ranking. It is worth noting how−qα(·)
behaves with respect to st. dev.(·) when skewness and fat-tails affect the probability law of

random returns.
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3 Estimation of Performance Measures

3.1 Notations and Preliminary Definitions

Let (Ω,F , P) be a probability space on which any random variable (rv) is defined to represent

the return on investments under different market scenarios measured at a final date. From the

estimation perspective the main concern are functionals depending upon the distribution ofX,

then we denoteD the convex set of cumulative distribution functionsFX(x) = P(X 6 x)

for x ∈ R. We assumeδx ∈ D for everyx ∈ R, i.e. point-mass distributions are admitted.

We write X ∼ F if and only if F = FX . The empirical distribution of a random sample

X = (X1, . . . , Xn) having sizen ∈ {1, 2, . . .} is Fn(ω, x) = 1
n

∑n
i=1 I{Xi6x}(ω), whereXi

are i.i.d. rv’s with common distributionF. By the Law of Large Numbers it is a consistent

estimator of the unknownF ∈ D; by the Glivenko-Cantelli theorem the convergence is uniform

in x with probability 1. The estimate ofFn(ω, x) at a given data setx = (x1, . . . , xn) ∈ Rn

from historical observations or Monte Carlo simulation isF̂n(x) = 1
n

∑n
i=1 δxi

((−∞, x]), or

equivalently1
n

∑n
i=1 I{xi6x}, indeed a discrete uniform distribution that assigns probability1

n
to

each of the sample valuesXi. This implies thatD contains all the empirical df’s, which from

now on will be the additional assumption. Typical financial quantities such as portfolio expected

return or portfolio volatility can be expressed as astatistical functional, i.e. a real-valued map

θ(F ) over those df’s for which the definition makes sense. Two fundamental examples are the

meanθ(F ) =
∫

xdF corresponding to the expected valueE(X) = m and the standard deviation

θ(F ) =
(∫

(x−m)2dF
)1/2

corresponding to the central second momentv2 = E(X −m)2, for

X ∼ F and provided that bothm, v2 are finite. It is worth noting that this is the case when

X ∈ Lp for p = 1, 2, or equivalently whenF belongs to the subsetDp ⊂ D of those df’s

having finitepth moment.

3.2 Representation of Performance Measures and Their Estimators

We assume all trades to be financed at horizon and take all returns banked to the same terminal

date. Thus anyX ∈ X ⊂ L0 represents the random rate of portfolio’s return from a trading

strategy. HereL0 denotes the space of all (equivalence classes of) rv’s. By ameasure of per-

formance we mean a mapϕ : X → [0,∞], whereϕ(X) represents the value of the services

potentially provided by the portfolio management industry;X is assumed to be a convex cone

containing the constants functions, in fact a vector space. Classical performance measures arise

in portfolio optimization problems and are indeed expressed as reward-risk ratios. In this paper

we consider those listed below.
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• When a given investor solves its portfolio selection problem in terms of expected return

and variance of return, the optimized investment has the highest Sharpe ratio defined

as m
v
, whereX is usually the excess return over a (possibly random) benchmark. The

Sharpe ratio is often used for ranking alternative investments and decide what portfolio

has experienced the best performance, i.e. the highest risk-adjusted return within the asset

universe.

• Since the Sharpe ratio violates the no-arbitrage condition, Bernardo and Ledoit (2000)

proposed the Gain-Loss ratiom
m−

to correct this anomaly, wherem− := E(−min{X, 0})
and the corresponding statistical functional is

∫
x−dF, whit x− := −xI{x<0}. The quan-

tity −min{X, 0} is also calledshortfall and its expectation is reminiscent of thelimited

expected value functionknown in the insurance literature. The Gain-Loss ratio is an ac-

ceptable index of performance, in the sense of [6].

• The mean-variance optimization problem can be replaced by the constrained maximiza-

tion of m subject to the acceptability ofX. This means that the inequality constrain

ρ(X) 6 λ is imposed on a different risk measure other than the standard deviationv,

with λ > 0. In particular,ρ can be a coherent risk measure and one can equivalently

refers to the maximization of the Risk-Adjusted Return on Capital (RAROC)m
ρ(X)

, see

for example [5], whereX belongs toL1 and is provided by admissible trading strate-

gies. As a widespread coherent risk measure we refer to the expected shortfall or Average

Value at Risk (AVaR), for which the statistical functional is− 1
α

∫ α

0
q−s (F )ds with X ∼ F.

The integrand is the lower quantileinf{x ∈ R : F (x) > α} at the levelα ∈ (0, 1).

• Since practitioners use VaR as a risk measure, the performance ratiom
−q−α (F )

at the level

α ∈ (0, 1) is of great importance and we include it in our analysis. Here VaRα(X) =

−q−α (F ).

REMARK 1. Actually, the standard deviation of the random return is not a monetary risk mea-

sure at all in the sense of [13, Definition 4.1].

The statistical functionals corresponding to all the above performance measures are of the form

θ(F ) = θ1(F )
θ2(F )

, and are law-invariant sinceϕ(X) = θ(F ) for X ∼ F. Thus their numerical value

remain unchanged if computed for two different random returnsX andY having the same

df. While the numerator ofθ is always the mean, the denominator is arisk functional , i.e. a

real-valued map from a subset dom(θ2) ⊂ D.

In this paper we consider only plug-in estimatorsθ(Fn) = θ1(Fn)
θ2(Fn)

based onn data points from

historical returns. The AVaRR estimator is related to an L-statistic, whereX(i) denotes theith
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Table 1: Estimators of Performance Ratios

θ1(Fn) θ2(Fn)

Sharpe ratio (SR) 1
n

∑n
i=1 Xi

(
1
n

∑n
i=1 X2

i −
(

1
n

∑n
i=1 Xi

)2
)1/2

Gain-Loss ratio (GR) 1
n

∑n
i=1 Xi

1
n

∑n
i=1−min{Xi, 0}

AVaR ratio (AVaRR) 1
n

∑n
i=1 Xi − 1

nα

(∑bnαc
i=1 X(i) + X(bnαc+1)(nα− bnαc)

)

VaR ratio (VaRR) 1
n

∑n
i=1 Xi −X(bnαc+1)

ordered statistics andbyc denotes the integer part ofy ∈ R. The VaRR estimator is the sam-

ple quantile related to the empirical quantile functionF−1
n (ω, α) = X(i)(ω)I{ i−1

n
<α6 i

n
} whose

estimated counterpart is justq−α (F̂n).

From the perspective of asset pricing theory Cochrane and Saa-Request (2001) use the Sharpe

ratio to spotlight the presence of portfolios with very high performance regarded as quasi-

arbitrages or good-deals (see also [?] and [?]). To model efficiency in some instance or financial

market stability (similar to the general equilibrium in economics) a basic assumption should

be to rule out good-deals which in turn is equivalent to restrict Sharpe ratio. This way pricing

kernels bounds are restricted if compared to those arising in a no-arbitrage framework. Unfor-

tunately, a positive P&L such thatX ∈ L1 but whose variance is infinite produces zero Sharpe

ratio still remaining an attractive investment alternative with positive underlying cash flow and

large risk, actually an arbitrage.

4 Robustness from the Qualitative Viewpoint

In this section we will proof the following result:

Corollary 1. Let X be a random return with distribution functionFX and assumeX ∼ F ∈
D1 ∩ dom(θ2). Then the following performance measures have not a robust estimatorθ̂n:

• The SR, for dom(θ2) = D2.

• The GR, for dom(θ2) =
{
F ∈ D :

∫
x−dF < ∞}

.

• The AVaRR, for dom(θ2) =
{
F ∈ D : g ◦ F inducesdg(x) = 1

α
I{06x6α}dx

}
, whereg is

a continuous concave distortion.

• The VaRR, for dom(θ2) = {F ∈ D : q+
α (F ) = q−α (F )}.
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Our plan is to first quickly review the definition of robustness, then to state a lemma which we

use in the proof of Corollary 1.

4.1 Further Terminology

Let (Xn)n∈N be i.i.d. observationsXn with common dfF ∈ D. In ranking investment funds

through performance ratios, one naturally requires that a contamination of the estimation pro-

cedure results in a small change of the resulting test statistics. Ify is derived from the dataset

x by largely modifying a small proportion of observations or by slightly modifying all of them,

then the difference between the corresponding estimated empirical df’sF̂n should be small as

well. The intuitive notion of robustness now calls for the continuity ofθ provided thatD is

endowed with some metric measuring the distance between df’s. When this is the case then for

every sample sizen ∈ N the value ofθ(F̂n) will change not much. The Hampel’s definition of

robustness is valid for every dataset(xn)n∈N, wherexn is a realization ofXn, and generalizes

to any pairF,G of df’s: the former corresponds to the true model of returnX and the latterG

corresponds to the contaminated model which deviates from the original in such a way a bias

occurs in the estimation procedure. To formally represent the estimation procedure consider the

composed maps

RN
π1,...,n−−−−−−→ Rn L−−−−−→ D

θ−−−−−→ R,

whereπ1,...,n(x1, x2, . . .) = x = (x1, . . . , xn) is the projection of the firstn data points and

L(x) = 1
n

∑n
i=1 I{xi6x} is a linear combination of their point mass distributions. Thus, the

estimator ofθ is θ̂n = h◦L◦π1,...,n and for everyn ∈ N its value (estimate) at the corresponding

datasetx is a measurable function̂θn(x1, . . . , xn). The probability distribution of the estimator

derived fromF is PF := P ◦ θ̂−1
n , and a similar notation holds for the contaminated distribution

G. Assumingθ is defined on some open subset ofD, the sequence of estimators(θ̂n)n∈N is said

to bequalitatively robust atF if for every ε > 0 there exist someδ > 0 andn0 ∈ N such that

for all G ∈ D, which are in a neighborhood ofF, we haven > n0 anddLévy(F,G) < δ implies

dProh(PF , PG) < ε. For the definition of the Ĺevy and Prohorov metrics see [14, Section 2.3].

When dealing with robust estimators of performance ratios we consequently have consistency,

i.e. θ̂n
P→ θ(F ), independently of the i.i.d. samplex from F. In fact uniformly with probability 1

we haveFn → F, which in turn impliesdLévy(Fn, F ) → 0 with probability 1. Ifθ is continuous

we can interchangeθ(F ) with the limit in probabilityFn asn → ∞, then the consistency is

established. On the other hand, if consistency holds true then qualitative robustness is equivalent

to continuity as stated in the classical Hampel’s theorem, see [14, Proposition 2.20,Theorem

2.21].

7



4.2 Lack of Robustness

We study the qualitative robustness of each statistical functionalθ(F ) = γ(θ1(F ), θ2(F )) cor-

responding to the law-invariant performance ratios introduced so far, whereγ(x, y) = x
y

is such

that y 6= 0. Let t : D → R2 be defined byt(F ) = (θ1(F ), θ2(F )), so thatθ = γ ◦ t. The

aforementioned estimation procedure is equivalent to have plug-in estimatorsθ̂n = θ(Fn) and

θ̂n,i = θi(Fn) eachi = 1, 2. The following is an easy but useful result.

Lemma 1. Let θ̂n,1 andθ̂n,2 be consistent estimators at the sameF of the reward statisticθ1(F )

and the risk statisticθ2(F ), related to the law-invariant performance ratioϕ(X) = θ(F ) with

X ∼ F. If θ̂n,1 and θ̂n,2 are qualitatively robust atF, thenθ̂n is qualitatively robust atF.

Proof. Assumeθ̂n,1 andθ̂n,2 are robust estimators atF. Since they are consistent atF we have

that θ̂n,1
P→ θ1(F ) andθ̂n,2

P→ θ2(F ) both imply(θ̂n,1, θ̂n,2)
P→ (θ1(F ), θ2(F )) by [25, Theorem

2.7]. The estimator̂θn of θ(F ) is consistent atF by the continuity ofγ [25, Theorem 2.3(ii)].

From the consistency ofθ1 andθ2 together with the robustness hypotheses and [14, Theorem

2.21], it follows that they are continuous statistical functionals atF. The continuity ofθ1 andθ2

is equivalent to that of the mapt, thusθ is continuous too and the derived statistical functional

is continuous atF. Another application of [14, Theorem 2.21] givesθ̂n as a robust estimator of

θ(F ) and we are done.

Before proving Corollary 1, let us provide some additional results. The risk functional corre-

sponding to the AVaR can be represented asθ2(F ) = − ∫ 1

0
q−s (F )dg(s), wheredg(·) is a prob-

ability measure on[0, 1] related to the concave distortiong assumed to be continuous so that

g◦F is a df. Thus, the AVaR is obtained by choosingg(x) = min{ x
α
, 1}, see Definition 4.48 and

Lemma 4.69 in [13] for further details. When a decreasing densityf : [0, 1] → [0,∞) exists,

the representation of AVaR is also given bydg(x) = f(x)dx; VaR can be given by the above

representation throughg(x) = I{α6x61}; GR can be included in the class of RAROC measures

with distortiong(x) = x−, then the corresponding coherent risk measure is the expectation of

the shortfall−min{X, 0}.

Proof of Corollary 1. The sample mean̂θn,1 and the sample standard deviationθ̂n,2 are not qual-

itatively robust (they are not continuous statistical functionals). Then by Lemma 1 their ratio is

not a qualitatively robust estimator of the Sharpe ratio statistic. Replacing the standard devia-

tion with m− gives raise to a nonrobust estimatorθ̂n,2 of the corresponding statistical functional

θ2(F ), and again by Lemma 1 the GR statistic has not a qualitative robust estimator. Also, when

θ2(F ) is−q−α (F ) by Lemma 1 we do not gain any robustness of the performance ratio estima-

tor, thought this risk functional has a qualitatively robust estimatorθ̂n,2, see [14, Theorem 3.7]
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and [7, Theorems 3.4 and 3.5]. The risk functional corresponding to the AVaR has a spectral

representation via the decreasing densityf(x) = 1
α
I{06x6α}(x). This implies thatf ∈ Lq(0, 1),

1
p

+ 1
q

= 1 andf(x) 6= 0 in the neighborhood of 0. Thus, by [7, Propositions 2.2 and 3.6] and

[7, Corollary 3.7] the estimator̂θn,2 of such a risk functional is not qualitatively robust.

REMARK 2. It is worth noting that all the above statistical functionals are defined at thoseF

such that consistency of estimators is ensured. For example, the domain of the risk functional in

the case of AVaRR and VaRR pertain to those df’s for which the population quantile is uniquely

determined. This provides the right link between the consistency of the estimatorθ̂n,2 and the

weak convergencêFn
P→ F.

5 Conclusions

In judging fund management the performance attribution is not resistant to data contamination,

then the estimated values of performance ratios do not fully reflect managerial skills. We show

that a serious drawback is absence of qualitative robustness for Sharpe ratio, Gain-Loss ratio,

Average-Value-at-Risk ratio and Value-at-Risk ratio. This suggests how not all the ratio statistics

can be safely used in performance evaluation especially when alternative investment funds have

to be ranked and the best has to be chosen.
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